
Private Editing Using

Untrusted Cloud Services

Private Editing Using

Cloud Services

Yan Huang and David Evans

University of Virginia

http://MightBeEvil.com

MotivationMotivation

2

� To take advantage of

existing cloud services

without revealing private

data to untrusted servers.

� We expect a solution that

• is easy to deploy

• and results in minimal

negative interference with

existing functionalities

Observation:

Server Doesn’t Need Data

Many cloud applications perform most

data-dependent computation on the

client:

– Reduce server load

– Reduce latencyComputation needed at server

• Protecting proprietary algorithms

• Greater computing power

• Large data needed

Observation:

Server Doesn’t Need Data

Many cloud applications perform most

computation on the

3

Computation needed at server-side:

Protecting proprietary algorithms

Greater computing power

Large data needed

Developed a

to enable private editing using

Google

4

Developed a Firefox extension

enable private editing using

Google Documents.

Typical Threat Model

Server is not trusted, has

full access to user data.

Typical Threat Model

5

Browser is not

compromised

Design Choices

Client

User JS

Add-on

Design Choices

6

Server

Proxy

Protocol Without Extension

Client
(1) Open

document

(2) Save

“sunny”

Protocol Without Extension

7

docid=001

“sunny”

Server

docid=001

“cloudy”

Protocol Without Extension

Client

(3) Save

“sunshine”

Protocol Without Extension

8

docid=001

“sunny”

Server

docid=001

“sunshine”

Protocol With Extension

Client
(1) Open

document

(2) Save

“sunny”

Extension

Dec

Enc

Protocol With Extension

9

docid=001

E(‘sunny’)

Server

docid=001

E(‘cloudy’)

Extension

Protocol With Extension

Client

(3) Save

“sunshine”

Extension

IncE

Protocol With Extension

10

docid=001

E(‘sunny’)

ServerExtension

docid=001

E(‘sunshine’)

Incremental Encryption

key generation algorithm

encrypt whole message

decrypt

given a key

previous message m, and previous

compute an updated ciphertext

Gen

)(mEncc k=

)(cDecm k=

),,(cmopIncEc k=′

[BKY01] – Buonanno, Katz, and Yung.

Incremental Encryption

key generation algorithm

encrypt whole message m

decrypt ciphertext c

given a key k, an edit operation op,

, and previous ciphertext c,
ciphertext c’.

11

, Katz, and Yung. Fast Software Encryption 2001

Privacy Only Mode

Trapdoor psuedorandom permutation

Random numbers

Document segments

Concatenation

Trapdoor psuedorandom permutation

Random numbers

Document segments

Concatenation

ir

id

||

F

1d 2d

)||(0 padsk rrF)||(
1110

drrrFsk ⊕⊕ (
20

rrFsk ⊕

L

Privacy Only Mode

12

Trapdoor psuedorandom permutationTrapdoor psuedorandom permutation

nd

)||
22

dr ⊕)||(
0 nnnsk drrrF ⊕⊕L

Multiple Characters per Block

Motivation: reduce the ciphertext

Challenge: the index of each character will change so

that naïve implementation won

Multiple Characters per Block

ciphertext blow-up

of each character will change so

ve implementation won’t work

13

1+id

id

id

IndexedSkipList

Head

0

0

0

IndexedSkipList

14

Nil

IndexedSkipList

Head

3

3

0

abc

IndexedSkipList

15

Nil

Insert(0,“abc”);

3

IndexedSkipList

Head

7

3

0

abc

3

IndexedSkipList

16

Nil

Insert(0,“abc”);

Insert(3,“1234”);

4

1234

4

IndexedSkipList

Head

4

2

0

ab

2

IndexedSkipList

17

Nil

Ins(0,“abc”);

Ins(3,“1234”);

Del(2, 3);

2

34

2

Security Analysis

• Server knows the document

• Can infer the length of original document

• Knows editing positions and edit operation types

• Can deny service

Security Analysis

Server knows the document ciphertext

Can infer the length of original document

Knows editing positions and edit operation types

18

Extreme Threat Model

Server controls client’s

application content software.

Extreme Threat Model

19

Server controls client’s

application content software.

Security Analysis

• Covert Channels such as timing or

• Using obfuscated protocol

• Dynamically generated client/server protocols

Virginia

-1 +Cal =1 +fo

-5 +Califor =3

-8 +California

Security Analysis

Covert Channels such as timing or delta

Using obfuscated protocol

Dynamically generated client/server protocols

20

California

fo =1 -2 =3

5 +Califor =3

8 +California

Functional Evaluation

• Basic editing functions are supported

• Features disrupted:

– Translation

– Spell checking

– Drawings

– Export

– Collaboration

Functional Evaluation

Basic editing functions are supported

21

Performance Evaluation

Micro-Benchmarks

encryption

decryption

transform delta

Microbenchmark of privacy

(avg. of 1000 tests)

Performance Evaluation

Benchmarks

Average Time

(per char)

.091 ms

.085 ms

.110 ms

22

of privacy-and-integrity mode

avg. of 1000 tests)

Macro-Benchmarks

0%

2%

4%

6%

8%

10%

12%

14%

insert deletes inserts &

deletes

p
e

rf
o

rm
a

n
ce

 d
e

g
ra

d
a

ti
o

n

1 char/block 8 char/block

Benchmarks

23

0

5

10

15

20

25

1 2 3 4 5 6 7 8

B
lo

w
-u

p

Block Size

Blow-up

Conclusion

• Editing encrypted data can be practical

• Practical secure computation under relaxed

security definitions can be very useful

• Would be a very challenging problem should the

service provider chooses not

Download from: www.MightBeEvil.com/securedocs

Conclusion

Editing encrypted data can be practical

Practical secure computation under relaxed

security definitions can be very useful

Would be a very challenging problem should the

service provider chooses not to cooperate

24

www.MightBeEvil.com/securedocs

