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MotivationMotivation
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� To take advantage of 

existing cloud services 

without revealing private 

data to untrusted servers.

� We expect a solution that

• is easy to deploy

• and results in minimal  

negative interference with 

existing functionalities

Observation: 

Server Doesn’t Need Data

Many cloud applications perform most 

data-dependent computation on the 

client:

– Reduce server load

– Reduce latencyComputation needed at server

• Protecting proprietary algorithms

• Greater computing power

• Large data needed

Observation: 

Server Doesn’t Need Data

Many cloud applications perform most 

computation on the 
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Computation needed at server-side:

Protecting proprietary algorithms

Greater computing power

Large data needed

Developed a 

to enable private editing using 

Google 
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Developed a Firefox extension 

enable private editing using 

Google Documents.

Typical Threat Model

Server is not trusted, has

full access to user data.

Typical Threat Model
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Browser is not 

compromised

Design Choices

Client

User JS

Add-on

Design Choices
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Server

Proxy



Protocol Without Extension

Client
(1) Open 

document

(2) Save 

“sunny”

Protocol Without Extension
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Protocol Without Extension

Client

(3) Save 

“sunshine”

Protocol Without Extension
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Incremental Encryption

key generation algorithm

encrypt whole message 

decrypt 

given a key 

previous message m, and previous 

compute an updated ciphertext
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[BKY01] – Buonanno, Katz, and Yung. 

Incremental Encryption

key generation algorithm

encrypt whole message m

decrypt ciphertext c

given a key k, an edit operation op,             

, and previous ciphertext c,   
ciphertext c’.
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, Katz, and Yung. Fast Software Encryption 2001

Privacy Only Mode

Trapdoor psuedorandom permutation

Random numbers

Document segments

Concatenation

Trapdoor psuedorandom permutation

Random numbers

Document segments

Concatenation

ir

id

||

F

1d 2d

)||( 0 padsk rrF )||(
1110

drrrFsk ⊕⊕ (
20

rrFsk ⊕

L

Privacy Only Mode

12

Trapdoor psuedorandom permutationTrapdoor psuedorandom permutation

nd

)||
22

dr ⊕ )||(
0 nnnsk drrrF ⊕⊕L



Multiple Characters per Block

Motivation: reduce the ciphertext

Challenge: the index of each character will change so 

that naïve implementation won

Multiple Characters per Block

ciphertext blow-up

of each character will change so 

ve implementation won’t work
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Nil

IndexedSkipList

Head

3

3

0

abc

IndexedSkipList
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Nil

Insert(0,“abc”);
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IndexedSkipList

Head

7

3

0

abc
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IndexedSkipList
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Nil

Insert(0,“abc”);

Insert(3,“1234”);

4

1234
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IndexedSkipList

Head

4
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0

ab

2

IndexedSkipList
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Nil

Ins(0,“abc”);

Ins(3,“1234”);

Del(2, 3);

2

34
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Security Analysis

• Server knows the document 

• Can infer the length of original document

• Knows editing positions and edit operation types

• Can deny service

Security Analysis

Server knows the document ciphertext

Can infer the length of original document

Knows editing positions and edit operation types
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Extreme Threat Model

Server controls client’s

application content software.

Extreme Threat Model
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Server controls client’s

application content software.

Security Analysis

• Covert Channels such as timing or 

• Using obfuscated protocol

• Dynamically generated client/server protocols

Virginia

-1 +Cal =1 +fo

-5 +Califor =3

-8 +California

Security Analysis

Covert Channels such as timing or delta

Using obfuscated protocol

Dynamically generated client/server protocols
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Functional Evaluation

• Basic editing functions are supported

• Features disrupted:

– Translation

– Spell checking

– Drawings

– Export

– Collaboration

Functional Evaluation

Basic editing functions are supported
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Performance Evaluation

Micro-Benchmarks

encryption

decryption

transform delta

Microbenchmark of privacy

(avg. of 1000 tests)

Performance Evaluation

Benchmarks

Average Time 

(per char)

.091 ms

.085 ms

.110 ms
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of privacy-and-integrity mode 

avg. of 1000 tests)

Macro-Benchmarks
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Conclusion

• Editing encrypted data can be practical

• Practical secure computation under relaxed 

security definitions can be very useful

• Would be a very challenging problem should the 

service provider chooses not 

Download from: www.MightBeEvil.com/securedocs

Conclusion

Editing encrypted data can be practical

Practical secure computation under relaxed 

security definitions can be very useful

Would be a very challenging problem should the 

service provider chooses not to cooperate
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